PERINATAL PROGRAMMING OF FEMALE SUBFERTILITY: THE IMPACT OF NEONATAL IMMUNE ACTIVATION ON BEHAVIOUR, OVARIAN DEVELOPMENT, AND THE BRAIN

Presented By Erin Alexandra Fuller

BPsych (Hons1) (Newcastle)

A thesis submitted in fulfilment of the requirements for the degree

of Doctor of Philosophy Psychology (Science)

December 2017

School of Psychology, Faculty of Science and Information Technology The University of Newcastle This research was supported by an Australian Government Research Training Program (RTP) Scholarship

Acknowledgements

Well, it's finally done... and there are many people I need to thank for that, as it really does take a village. First and foremost, I would like to thank my supervisor, Professor Deb Hodgson, for her tireless guidance, encouragement, mentorship, and support. Thanks for always being there for me, no matter how busy you are or what part of the world you are in. I cannot put into words how thankful I am for you making yourself available to read my drafts, even when I push deadlines (I'm sorry!), and for making sense of my ideas even when I didn't understand them myself. Your enthusiasm and ability to create a narrative and communicate research is inspiring. I am very grateful for all the opportunities you have given me throughout my candidature and I am so very lucky to have been in your research team. I have learnt so much throughout my PhD; how to be a better researcher, academic and critical thinker, a better manager of people, and when to ask for help. Even though I often didn't *like* my PhD, I want you to know I actually really loved it. Thank you Deb, for your patience, kindness and friendship.

I'd like to thank Ms Tiffany Kiem, Dr Carla Pollard, Ms Donna Catford, and Ms Soraya Salleh for your devoted animal care, dedication to the research process, and for loving the rats as much as we do (even though they try to kill me through allergies every single day). Big thanks to Ms Naomi Kiem, Ms Kim Hughes, and all conjoint ACEC staff.

I would like to acknowledge the many contributors, collaborators, and facilitators who added to this thesis. Dr Jessie Sutherland, Dr Kate Redgrove, Victoria Pye, Dr Rafael Barreto, Dr Lin Ong, Professor Phil Dickson and Professor Peter Dunkley. Big thanks to Dr Adam Walker for being there from the very beginning and for teaching me so much. You are an inspiration. A very special thank you to Professor Eileen McLaughlin for her insightful guidance and advice. Thank you for the opportunity to learn from you and your group, and for providing me with the resources to do so. My time spent with your team was invaluable and this project would not have come to fruition without your input. You helped this psychology student become a scientist.

Thank you, Dr Lauren Harms, for always being free for my office pop-ins and for saving me from lab fails. I owe you and that box of screwdrivers big time. Thanks for all your help and guidance, lab management and pep, and for having the best music taste ever. I have learnt so much from you, both musically and scientifically.

ii

Dr Luba Sominsky, thank you for the constant support, advice, encouragement, and quick email replies (both research related or just baby hippo pictures). You were an instrumental part of this thesis and I'm glad to call you not only my colleague, but my dear friend.

Dearest Dr Crystal Meehan (yay!), the best PhD buddy a person could ask for. I don't have words how much you helped my get through the good times and the not-so-good times. I'm so glad we met (again) in third year undergrad psychology when we randomly sat next to each other in the library. It was pure serendipity and the beginning of a beautiful, lifelong friendship.

A massive thank you to Marissa and Katie for all the hard work and dedication during your honours year and beyond. You guys really kept me going and made it fun. Most importantly, thank you for being such good friends. I'm so proud of you guys. To everyone in the lab, thanks for being such an excellent, clever, and supportive crew. Junior Burger, thanks for always helping me find words, make lists, format stuff, and bounce ideas.

To all my friends, thank you for knowing when I needed to talk about my PhD and when I just needed a wine and a good distraction from my PhD. Thanks for putting up with me never making it to stuff and being stressed all the time. You are all deadset legends and I love you. Your support and encouragement mean the world. Special thanks to Erin D for all the procrastination phone chats, the travel loans, and everything in between. Major shout out to Louise for her critical eye, shared wine, and hilarity. Erin K, thanks for the home cooked meals. To my adopted big sister, Clare. Thanks for all the coffees, the laughs, the big quizzes, the sushi, the early wake ups, the beach swims, and for taking care of me. You're a doll and I am forever grateful, even for the walks.

And last but certainly not least, I want to thank my beautiful mother, Krystyna. Your love, encouragement, kindness, and unwavering support of every possible kind has not gone unnoticed nor unappreciated. I honestly could not have done it without you by my side and I am so thankful and so lucky that you are my Mumma. Thank you for giving me every opportunity to succeed and for helping me to do so at every step along the way. This achievement is yours as much as it is mine. I love you.

Declaration

I hereby certify that the work embodied in the thesis is my own original work, conducted under normal supervision. The thesis contains published scholarly work of which I am a coauthor. For each such work a written statement, endorsed by the other authors, attesting to my contribution to the joint work, has been included. The thesis contains no material which has been accepted, or is being examined, for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to the final version of my thesis being made available worldwide when deposited in the University's Digital Repository, subject to the provisions of the Copyright Act 1968 and any approved embargo.

Signed:

Erin Alexandra Fuller,

December 14th, 2017

This thesis consist of an introduction comprised of a written literature review and a published review paper. Experimental chapters are presented as both published works and traditional chapters, with figures and tables embedded throughout.

Published Works Incorporated in this Thesis

- Sominsky, L., Fuller, E.A., Hodgson, D.M. (2015). Factors in early-life programming of reproductive fitness. *Neuroendocrinology*, 102 (3): 216-225. DOI: 10.1159/000431378
- Fuller, E.A., Sominsky, L., Sutherland, J.M., Redgrove, K.A., Harms, L., McLaughlin, E.A., Hodgson, D.M. (2017). Neonatal immune activation depletes the ovarian follicle reserve and alters ovarian acute inflammatory mediators in neonatal rats. *Biology of Reproduction.* Accepted 7th October, 2017. DOI--: 10.1093/biolre/iox123
- Ong, L.K., Fuller, E.A., Sominsky, L., Hodgson, D.M., Dunkley, P.R., Dickson, P.W. (2017). Early life peripheral lipopolysaccharide challenge reprograms catecholaminergic neurons. *Scientific Reports* (7), DOI: 10.1038/srep40475.

Table of Contents

Acknowledgmentsii
Declarationiv
List of Published Worksv
Thesis Abstractxii
List of Abbreviationsxiv
List of Figuresxix
List of Tablesxxii
Chapter 1. Introduction and Literature Review1
1.1 Developmental Origins of Health and Disease1
1.2 Perinatal Programming3
1.3 The Impact of Perinatal Stress on Adult Health Outcomes5
1.3.1 Perinatal Programming of Pathology7
1.3.2 Perinatal Programming of Psychopathology8
1.3.3 The Role of Stress in Perinatal Programming11
1.3.4 Prenatal Stressors13
1.3.5 Post-Natal Stressors15
1.4 Mechanisms of Perinatal Programming17
1.4.1 The Autonomic Nervous System (ANS)18
1.4.1.1 Programming of the ANS20
1.4.2 The Hypothalamic-Pituitary-Adrenal (HPA) Axis
1.4.2.1 Programming of the HPA Axis23
1.4.3 The Hypothalamic-Pituitary-Gonadal (HPG) Axis
1.4.3.1 Programming of the HPG Axis28
1.4.4 The Immune System32
1.4.4.1 Immune Mediation of Female Reproductive Parameters40
1.4.4.2 Perinatal Programming of the Immune System
1.4.4.3 Perinatal Programming of the Immune System via Neural-Endocrine- Immune Interactions45
1.5. Animal Models of Early Life Stress48
1.5.1 Lipopolysaccharide (LPS): An Immunological Stressor
1.5.2 Lipopolysaccharide: Animal Models of Neonatal Immune Activation (NIA)51
1.5.2.1 Impact of Neonatal LPS on Metabolic Function

1.5.2.2 Impact of Neonatal LPS on Endocrine Function	53
1.5.3 Impact of LPS Administration on Behaviour	53
1.5.3.1 Anxiety-like behaviours	53
1.5.3.2 Sickness behaviours and depressive-like behaviours	54
1.5.4 Impact of Neonatal LPS on Immune Function	57
1.5.5 Impact of LPS on Reproductive Parameters	59
1.5.5.1 Endocrine alterations	60
1.5.5.2 Morphological alterations	61
1.5.5.3 Ovarian alterations and reproductive aging	62
1.5.5.4 Central alterations	64
1.6. Mechanisms of the LPS Inflammatory Response: Involvement in female	
Reproduction	65
1.6.1 Cytokines	66
1.6.1.1 Interleukin 1 (IL-1)	67
1.6.1.2 Interleukin 2 (IL-2)	68
1.6.1.3 Interleukin-6 (IL-6)	68
1.6.1.4 Tumour Necrosis Factor alpha (TNFα)	69
1.6.2 Toll-Like Receptors (TLRs)	71
1.6.2.1 Toll-like receptors and female reproductive function	73
1.6.3 Prostaglandins and Cyclooxygenase (COX) Enzyme Pathways	75
1.6.3.1 Prostaglandins	75
1.6.3.2 Cyclooxygenase (COX) Enzyme Pathways	76
1.7 Conclusion: Rational Summary and Aim of Thesis	78
1.8 Overview of papers	81
Publication 1	85
Chapter 2. General Methods	95
2.1 Animal Ethics Approval	95
2.2 Animals and Housing	95
2.2.1 Housing	96
2.2.2 Breeding	96
2.2.3 Housing of Experimental Animals	97
2.3 Animal Weights and Monitoring 2.3.2 Monitoring During Experimental Procedures	
2.4 Early life Stress Paradigm: Neonatal Lipopolysaccharide Administration	

2.5 Neonatal Blood and Tissue Collection	
2.5.1 Blood Sampling	
2.5.2 Tissue Collection 2.6 Adult Blood and Tissue collection	
2.6.1 Non-terminal and Terminal Blood Sampling	
2.6.2 Tissue Collection	
2.7 Tissue Preparation and Analysis	103
2.7.1 Ovarian tissue	103
2.7.1.1 Histological Evaluation of Ovaries	104
2.7.2 Frozen Tissue	106
2.7.2.1 RNA extraction	106
2.7.2.2 Reverse Transcription	106
2.7.2.3 Quantitative Real Time PCR	
2.7.2.4 ELISA and Corticosterone RIA Assays	107
2.8 Determination of Puberty Onset	107
2.9 Female Reproductive Anatomy, Oestrus Cycle and Oestrus Monitoring	108
2.10 Adult Behavioural Tests	113
2.10.1 Sucrose Preference Test	113
2.10.1.1 Sucrose Preference Test Protocol	114
2.10.2 Social Interaction Test	116
2.10.2.1 Social Interaction Test Protocol	117
2.10.3 Female Sexual Behaviour Testing	119
2.10.3.1. Paced Mating Protocol	120
2.10.4 Restraint Stress	121
2.10.4.1 Restraint Stress Protocol	
2.11 Data Analysis	123
Chapter 3. Neonatal Immune Activation Alters the Female Behavioural F	<i>.</i>
Motivational, Social, and Reproductive Behaviours	
3.1 Introduction	
3.2 Methods	133
3.2.1 Animals	133
3.2.2 Behavioural Testing	134
3.2.2.1 Sucrose preference	
3.2.2.2 Social interaction	136
3.2.2.3 Paced mating	137

3.2.3 Blood and Tissue Sampling1	.39
3.2.4 Statistical Analysis14	40
3.3 Results1	.40
3.3.1 Neonatal Weight Gain1	.40
3.3.2 Neonatal Circulating Tumour Necrosis Factor Alpha (TNFα)1	.40
3.3.3 Developmental Weight Gain1	.41
3.3.4 Day of Vaginal Opening, Weight at Puberty and Oestrus Cyclicity14	42
3.3.5 Sucrose Preference Assay14	43
3.3.6 Social Interaction Behaviours14	46
3.3.6.1 Analysis of complete duration behavioural totals1	46
3.3.6.2 Time bin analysis of social interaction behaviours14	47
3.3.6.3 Time bin analysis of social interaction sniffing behaviours14	49
3.3.6.4 Social interaction circulating corticosterone levels1	.50
3.3.7 Paced Mating Behaviours1	.52
3.3.7.1 Motivational, proceptive and receptive behaviours1	.52
3.3.7.2. Anxiety-like and hypervigilance behaviours1	53
3.3.7.3 Sperm plug detection1	.54
3.3.7.4 Female HPG axis assessment during paced mating: luteinising hormone and follicle stimulating hormone1	.54
3.4 Discussion1	57
Chapter 4. Neonatal Immune Activation Depletes the Ovarian Follicle Reserve and Alters Ovarian Acute Inflammatory Mediators in Neonatal Rats	
4.1 Publication Introduction1	71
Publication 21	74
Chapter 5. Neonatal Immune Activation Leads to Sustained Ovarian Reservence Depletion and Altered Peripheral Inflammatory Mediators	
5.1 Introduction1	.87
5.2 Method19	94
5.2.1 Animals19	94
5.2.2 Oestrus cycle monitoring1	.95
5.2.3 Acute stress protocol19	95
5.2.4 Blood and Tissue Collection1	96
5.2.4.1 Blood collection and assessment19	96
5.2.4.2 Tissue collection1	.97

5.2.5 Tissue Preparation and Analysis	199
5.2.5.1 Fixed ovarian tissue	199
5.2.5.2. RNA extraction, Reverse Transcription and qRT-PCR	199
5.2.6 Data Analysis	200
5.3 Results	202
5.3.1 Neonatal Weight Gain	202
5.3.2 Neonatal Circulating Inflammation	202
5.3.3 Developmental Weight Gain	203
5.3.4 Day of Vaginal Opening, Weight at Puberty and Oestrus Cyclicity	204
5.3.5 Adult Circulating Inflammation	205
5.3.5.1 Circulating Interleukin-6 (IL-6	205
5.3.5.1 Circulating Interleukin-2 (IL-2) 24 hours post restraint	206
5.3.6 Adulthood Ovarian Follicle Quantification 24 Hours Post-Restraint	207
5.3.6.1 Early ovarian follicle populations	207
5.3.6.2 Late ovarian follicle populations	209
5.3.7 Ovarian mRNA expression 24 hours post restraint	210
5.4 Discussion	212
Chapter 6. Neonatal Immune Activation and a 'Second Hit' of Adult	
Chapter 6. Neonatal Immune Activation and a 'Second Hit' of Adult Psychological Stress Alters Central Inflammatory Mediators: Implications f	or
Psychological Stress Alters Central Inflammatory Mediators: Implications f	226
Psychological Stress Alters Central Inflammatory Mediators: Implications f Female Reproduction	226
Psychological Stress Alters Central Inflammatory Mediators: Implications f Female Reproduction	226 226 231
Psychological Stress Alters Central Inflammatory Mediators: Implications f Female Reproduction 6.1 Introduction 6.2 Methods	226 226 231 231
Psychological Stress Alters Central Inflammatory Mediators: Implications f Female Reproduction	226 226 231 231 232
Psychological Stress Alters Central Inflammatory Mediators: Implications f Female Reproduction	226 236 231 231 232 234
Psychological Stress Alters Central Inflammatory Mediators: Implications f Female Reproduction	226 231 231 232 234 236
Psychological Stress Alters Central Inflammatory Mediators: Implications f Female Reproduction	226 231 231 231 232 234 236 236
Psychological Stress Alters Central Inflammatory Mediators: Implications f Female Reproduction	226 231 231 231 232 234 236 236 236
Psychological Stress Alters Central Inflammatory Mediators: Implications f Female Reproduction	226 231 231 231 232 234 236 236 236 236 236 236
Psychological Stress Alters Central Inflammatory Mediators: Implications f Female Reproduction	226 231 231 231 232 234 236 236 236 236 236 241 246
Psychological Stress Alters Central Inflammatory Mediators: Implications f Female Reproduction	226 231 231 231 232 234 236 236 236 236 236 241 246 240 240 250 ninergic

7.2 Perinatal programming of the kynurenine pathway: Potential role in female NIA		
induced subfertility	265	
7.3 Methods	271	
7.3.1 Animals and neonatal treatment	271	
7.3.2 Tissue collection	272	
7.3.3 RNA extraction, reverse transcription and qRT-PCR	272	
7.3.4 Data Analysis	273	
7.4 Results	274	
7.4.1 Neonatal weight	274	
7.4.2 Peripheral tissue examination	274	
7.4.3 Central tissue examination	275	
7.5 Discussion	278	
8. General Discussion	296	
8.1 Introduction	296	
8.2 Defining the Female Behavioural Phenotype	298	
8.3 Perinatal Programming of Reproductive Development	304	
8.4 Perinatal Programming of Peripheral Inflammation and Immune Vulnerability.		
8.5 Perinatal Programming of the Ovarian Reserve	307	
8.5.1 Acute impact of neonatal immune activation		
8.5.2 Sustained impact of neonatal immune activation		
8.6 Mediators of Acute and Sustained Ovarian Follicle Depletion	311	
8.7 Perinatal Programming of Central Mediators: Contribution to Behaviour	315	
8.8 Conclusions, Future directions, and Implications	318	
8.8.1 General Summary		
8.8.2 Future Directions	319	
8.8.3 Implications	321	
References	325	

Thesis Abstract.

Perinatal programming of female subfertility: Impact of neonatal immune activation on behaviour, ovarian development, and the brain.

The early life environment prescribes long-term health and disease outcomes. Accumulating evidence suggests that female reproductive health is shaped by perinatal factors, such as immune status. The fundamentals of female reproductive success and longevity are established in early life, where the dynamics of ovarian development are coregulated via immune pathways to establish the ovarian reserve. Additionally, the immune system is known to be especially sensitive to perinatal stressors. This suggests that the early life environment plays an important role in sustained ovarian health and female fertility. Thus, inflammatory stressors during this critical period may permanently modify female ovarian development and immune-drive reproductive functioning, altering sexual behaviour and leading to a suboptimal female phenotype.

Using a rat model, we have previously demonstrated that neonatal immune activation (NIA) with bacterial mimetic lipopolysaccharide (LPS) is associated with; altered immune milieu, hypothalamic-pituitary-adrenal axis dysfunction, adult stress vulnerability, and an anxiety-like phenotype in males. The current thesis aimed to examine both the acute and long-term alterations in reproductive parameters in female rats exposed to an intraperitoneal injection of saline (control) or LPS (0.05mg/kg) to induce NIA on postnatal days 3 and 5.

Firstly, the behavioural phenotype of females in this model was examined in order to confirm and refine previous findings pertaining to female mating behaviour deficits, and establish if these alterations were driven by altered motivational states. The results of this study indicate that NIA leads to impairments in proceptive and receptive mating behaviours and an altered reproductive developmental trajectory. Secondly, the acute effects of NIA on female rats was analysed, where by NIA treatment was demonstrated to significantly deplete early ovarian follicle populations and increase ovarian inflammation, suggesting that immunemediated development of the ovary is perturbed by NIA in the female rat. Thirdly, the long term ramifications of neonatal bacterial exposure was examined in the adult female rat, demonstrating that NIA led to significantly advanced puberty onset, sustained ovarian reserve depletion, exaggerated peripheral inflammatory responses to stress, and increased ovarian inflammatory pathway gene expression. Lastly, the central gene expression of mediators associated with inflammation, stress regulation, and reproductive function were examined to elucidate on potential central mechanisms that may contribute to behavioural alterations and ovarian inflammation and reserve depletion. Furthermore, prospective mechanisms are suggested and data is presented demonstrating the potential of these for investigation in a female rat model of subfertility. The findings presented in this thesis suggest that NIA has the potential to perinatally program long-term central and ovarian immune functioning to a proinflammatory bias. This may detrimentally affect female reproductive fitness, fecundity, and stress responsivity, and as such, have implications for both physiological and psychological female health.

Abbreviations

5-HT	Serotonin
AA	Arachidonic acid
ABS	Australian Bureau of Statistics
ACEC	Animal Ethics Committee
ACTH	Adrenocorticotropic hormone
ADHD	Attention deficit/hyperactivity disorder
AG	Anogenital
ANOVA	Analysis of variance
aNS	Adulthood no stress
ANS	Autonomic nervous system
APAF	Australian Proteome Analysis Facility
APC	Antigen presenting cells
ARC	Animal Resources Centre
ARTs	Assisted reproductive therapies
aST	Adulthood restraint stress
BBB	Blood-brain barrier
CASP3	Caspase 3
cDNA	Complementary deoxyribonucleic acid
CORT	Corticosterone
COX	Cyclooxygenase
CRH	Corticotropin releasing hormone
CRHR1/2	Corticotropin releasing hormone receptor 1/2
C-RP	C-reactive protein
CSF	Colony stimulating factor
CTCF	Corrected total cell florescence
DA	Dopamine
DAB	3, 3-diaminobenzidine
DAPI	4',6-diamidino-2-phenylindole
DEHP	Di(2-ethylhexyl)phthalate
DEPc	Diethyl pyrocarbonate

DES	Diethylstilboestrol
DEX	Dexamethasone
DG	Dentate gyrus
DNA	Deoxyribonucleic acid
DOHaD	Developmental Origins and Health and Disease
DSM-V	Diagnostic and Statistical Manual of Mental Disorders, version 5
DVO	Day of vaginal opening
EDTA	Ethylenediaminetetraacetic acid
ELISA	Enzyme-linked immunosorbent assay
EPI	Epinephrine
EPM	Elevated plus maze
ER	Oestrogen receptor
Foxo3	Forkhead box O3
FSH	Follicle stimulating hormone
FWD	Forward
GAPDH	Glyceraldehyde 3-phosphate dehydrogenase
GD	Gestation day
Gdf	Growth differentiation factor
GFAP	Glial fibrillary acidic protein
GnRH	Gonadotropin releasing hormone
GnRHR	Gonadotropin releasing hormone receptor
GR	Glucocorticoid receptor
H&E	Hematoxylin and eosin
HC	Hippocampus
HD	Habituation day
HPA	Hypothalamic-pituitary-adrenal
HPG	Hypothalamic-pituitary-gonadal
HTH	Hypothalamus
lba-1	Ionized calcium-binding adapter molecule 1
IDA	Information dependent acquisition
IDO	Indolamine-2,3-Dioxygenase

IFN	Interferon
IgE	Immunoglobulin E
IL	Interleukin
ір	Intraperitoneal
IPA	Ingenuity Pathway Analysis
IRAK	Interleukin-1 receptor-associated kinase 1
IUGR	Intrauterine growth restriction
IVF	In vitro fertilisation
JAK/STAT	Janus kinase/signal transducers and activators of transcription
KP	Kynurenine pathway
Kyn	Kynurenine
LBP	LPS-binding protein
LC3	Light chain 3
LC	Locus coeruleus
L-Dopa	3,4-dihydroxy-l-phenylalanine
LH	Luteinizing hormone
LPS	Lipopolysaccharide
LSV	Lateral saphenous vein
LXR/RXR	Liver X receptor/retinoic X receptor
MANOVA	Multivariate analysis of variance
МАРК	Map kinase
Mapk8/Jnk1	Mitogen activated protein kinase 8/Jun N-terminal kinase
MD	Myeloid differentiation protein
MDD	Major Depressive Disorder
MHC	Major histocompatibility complex
MIA	Maternal immune activation
mPOA	Medial pre optic area
MR	Mineralocorticoid
mRNA	Messenger ribonucleic acid
MS	Mass spectrometry
mTOR	Mechanistic target of rapamycin

MyD88	Myeloid differentiation primary response 88
NCRIS	National Collaborative Research Infrastructure Strategy
NE	Norepinephrine
NF	Nuclear factor
NHMRC	National Health and Medical Research Council of Australia
NIA	Neonatal immune activation
NK	Natural killer
nLPS	Neonatal lipopolysaccharide
NMDA	N-methyl-D-aspartate
Nos1	Nitric oxide synthase-1
NSAI	Nonsteroidal anti-inflammatory pharmaceutical
nSAL	Neonatal saline
РАН	Polycyclic aromatic hydrocarbon
PAMP	Pathogen-associated molecular patterns
PBS	Phosphate buffered saline
PCB	Polychlorinated biphenyl
PCOS	Polycystic ovarian syndrome
PFC	Prefrontal cortex
PG	Prostaglandin
PMT	Paced-mating test
PND	Post-natal day
PNS	Parasympathetic nervous system
POF	Premature ovarian failure
POI	Primary ovarian insufficiency
Poly I:C	Polyinosinic:polycytidylic acid
Prkc	Protein kinase C
PRR	Pattern-recognition receptor
PTSD	Post-traumatic stress disorder
PVC	Polyvinyl chloride
PVN	Paraventricular nucleus
qRT-PCR	Quantitative reverse transcription polymerase chain reaction

REV	Reverse
RNA	Ribonucleic acid
SDS	Sodium dodecyl sulfate
SIT	Social interaction test
SN	Substantia nigra
SNS	Sympathetic nervous system
SPSS	Statistical Package for the Social Sciences
SPT	Sucrose preference test
STI	Sexually transmitted infection
ТВ	Time bin
TBS	Tris-buffered saline
T _c	T cytotoxic
TCDD	2,3,7,8-tetrachlorodibenzo- <i>p</i> -dioxin
TDO	Tryptophan-2,3-Dioxygenase
TGF	Transforming growth factor
Тн	T helper
ТН	Tyrosine hydroxylase
TLR	Toll-like receptor
TNF	Tumour necrosis factor
TOFMS	Time of flight mass spectrometry
TRAF	Tumour necrosis factor receptor associated factor
Trp	Tryptophan
TUNEL	Terminal deoxynucleotidyl transferase dUTP nick end labelling
ТХ	Thromboxane
VTA	Ventral tegmental area

List of Figures

Figure 1.1 Perinatal programming of long term health and disease2
Figure 1.2 Perinatally programmed developmental alterations when mismatch occurs4
Figure 1.3 Pathway for catecholamine synthesis and enzymatic steps20
Figure 1.4 HPA axis cascade23
Figure 1.5 Schematic representation of the Female HPG axis
Figure 1.6 Functional flow of immunity following antigen detection
Figure 1.7 LPS immune activation via toll-like receptors, cytokines and prostaglandins50
Figure 1.8 Identification and corresponding postnatal development of ovarian follicle
pool62
Figure 2.1 The model of early life immune activation, critical periods of developmental
plasticity for the immune system, the HPA and HPG axis100
Figure 2.2 Pictorial representation of rat ovarian follicles for histological
quantification105
Figure 2.3 Schematic representation of the H & E stained ovarian sections mounted on a
microscope slide105
Figure 2.4 Schematic representation of ovarian follicle recruitment in the female rat110
Figure 2.5 Graphical representation of fluctuations in hormone levels during the rat female
oestrus cycle111
Figure 2.6 Photomicrograph at 10x magnification showing stages of the rodent oestrus
cycle112
Figure 2.7 Top view of individual sucrose preference test (SPT) cage setup115
Figure 2.8 Schematic of the social investigation test (SIT) arena118
Figure 2.9 Photographic representation of the social interaction test (SIT) arena118
Figure 2.10 Diagram representing dimensions and layout of the paced mating test (PMT)
apparatus121
Figure 3.1 Average neonatal female weights and circulating TNF- α levels
Figure 3.2 Difference in weight gain between saline and LPS animals and absolute
developmental weights142
Figure 3.3 Day of vaginal opening, weights and first proestrus143

Figure 3.4 Sucrose preference and consumed (%) over a 3 day habituation period and 4 hour
test phase145
Figure 3.5 Counts of rearing and kicks during social interaction test (SIT)146
Figure 3.6 Mean frequency of approach and avoidance behaviours of test rat in time
bins148
Figure 3.7 Mean frequency of follow and rearing behaviour of test rat in time bins148
Figure 3.8 Mean frequency of grooming behaviour by test rat149
Figure 3.9 Sniffing behaviour performed by test rat in social interaction test (SIT)150
Figure 3.10 Corticosterone (CORT) levels across saline/treatment, pre/post social interaction
test (SIT)151
Figure 3.11 Mean frequency of behaviours in the paced mating test (PMT)153
Figure 3.12 Counts of rears and grooming during the PMT154
Figure 3.13 Mean circulating luteinising hormone (LH) pre/post paced mating test
(PMT)155
Figure 5.1 Representation of treatment allocations196
Figure 5.2 Flowchart of experimental protocol198
Figure 5.3 Average female neonatal weights on PND 3 and 5202
Figure 5.4 Circulating proinflammatory cytokines on PND 5 after LPS treatment203
Figure 5.5 Average female developmental weights204
Figure 5.6 Average DVO, DVO average weight and day of 1 st oestrus
Figure 5.7 CirculatingIL-6 levels pre and post restraint stress
Figure 5.8 Circulating IL-2 24 hours following restraint stress (terminal bleed)207
Figure 5.9 Adult mean ovarian counts of early follicles208
Figure 5.10 Adult mean ovarian counts for late ovarian follicles
Figure 5.11 Normalised fold change mRNA expression in the adult ovary
Figure 6.1 lateral sagittal visual representation of brain sections
Figure 6.2 Coronal representations of brain sections (rat atlas)
Figure 6.3 Fold change expression of hippocampal inflammatory genes
Figure 6.4 Fold change expression of hippocampal stress and neuropeptide genes240
Figure 6.5 Fold change expression of hypothalamic inflammatory genes244
Figure 6.6 Fold change expression of hypothalamic stress and neuropeptide genes245
Figure 6.7 Fold change expression of mPOA inflammatory genes

Figure 6.8 Fold change expression of mPOA stress and neuropeptide genes	.249
Figure 7.1 Simplified schematic of the Kynurenine metabolic pathway (KP)	.267
Figure 7.2 Mean neonatal weights on PND 5	.274
Figure 7.3 Fold change expression of inflammatory and KP pathway genes in the spleen a	and
liver of male pups following LPS (6hr post)	.276
Figure 7.4 Fold change expression of inflammatory and KP pathways genes in whole brai	in
tissue of male pups following LPS (6hr post)	.277

List of Tables

Table 1.1 Toll-like receptor expression and specificity	73
Table 2.1 Summary of oestrus phase and duration, behaviour and vagina	l cell
morphology	121
Table 3.1 Definition of social interaction behavioural variables measured	137
Table 3.2 Definition of paced mating behavioural variables measured	138
Table 3.3 Means, SEM and SD of frequency of social interaction total variables	151
Table 3.4 Mean, SEM and SD of paced mating variables	156
Table 5.1 Primer forward and reverse sequence for ovarian qRTPCR	200
Table 5.2 ANOVA summary of statistics for late follicle types	209
Table 5.3 ANOVA statistics for normalised ovarian mRNA expression	210
Table 6.1 Brain section Bregma levels	232
Table 6.2 Primer forward and reverse sequences for Central qRTPCR	235
Table 6.3 ANOVA statistics for hippocampal mRNA expression	238
Table 6.4 ANOVA statistics for hypothalamic mRNA expression	243
Table 6.5 ANOVA statistics for medial preoptic area mRNA expression	247
Table 7.1 qRTPCR gene targets and gene assay IDs	273